Finite Automata

Part One



Computability Theory



What problems can we solve with a computer?



What problems can we solve with a computer?
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Computers are Messy
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Computers are Messy
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Fig 2 Covering Everything from PCs to Supercomputers NVIDIA’s CUDA architecture boasts high scalability. The quantity of processor
units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has

double-precision operation units (SM) added.
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Computers are Messy

That messiness makes it hard to rigorously
say what we intuitively know to be true:
that, on some fundamental level, different
brands of computers or programming
languages are more or less equivalent in
what they are capable of doing.

g -- C vs C++
' VS vs Java
.. vs Python




We need a simpler way of
discussing computing machines.



An automaton (plural: automata) is a
mathematical model of a computing device.
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Why Build Models?

« Mathematical simplicity.

It is significantly easier to manipulate our
abstract models of computers than it is to
manipulate actual computers.

 Intellectual robustness.

 If we pick our models correctly, we can make
broad, sweeping claims about huge classes of
real computers by arguing that they're just
special cases of our more general models.



Why Build Models?

 The models of computation we will explore in
this class correspond to different conceptions of
what a computer could do.

 Finite automata (this week) are an abstraction
of computers with finite resource constraints.

* Provide upper bounds for the computing machines
that we can actually build.

 Turing machines (later) are an abstraction of
computers with unbounded resources.

* Provide upper bounds for what we could ever hope
to accomplish.



What problems can we solve with a computer?



What problems can we solve with a computer?

|

what is a
‘oroblem?”



Problems with Problems

 Before we can talk about what problems
we can solve, we need a formal definition
of a “problem.”

« We want a definition that

« corresponds to the problems we want to solve,
» captures a large class of problems, and
* is mathematically simple to reason about.

 No one definition has all three properties.



Formal Language Theory



Strings

An alphabet is a finite, nonempty set of symbols
called characters.

« Typically, we use the symbol X to refer to an alphabet.

A string over an alphabet 2 is a finite sequence of
characters drawn from 2.

Example: Let 2 = {a, b}. Here are some strings over 2:
a aabaaabbabaaabaaaabbb abbababba

The empty string has no characters and is denoted &€.

Calling attention to an earlier point: since all strings
are finite sequences of characters from %, you cannot
have a string of infinite length.



Languages

* A formal language is a set of strings.

 We say that L is a language over 2 if it is a
set of strings over 2.

 Example: The language of palindromes over
2 = {a, b, c} is the set

« {g, a, b, c, aa, bb, cc, aaa, aba, aca, bab, ... }

 The set of all strings composed from letters in
2. 1s denoted X*.

 Formally, we say that L is a language over X if
L C >*



The Cast of Characters

« Languages are sets of strings.

* Strings are finite sequences of characters.
* Characters are individual symbols.
 Alphabets are sets of characters.

Languages Alphabets

are sets of are nonempty, finite sets of

y y

. are finite sequences of
Strings Characters




Strings and Problems

Given a string w, determine whether w € S.
 Suppose that L is the language
L={"d","b", "c", ..., "2" }
* This is modeling the problem:

Given a string w, determine whether
w is a single lower-case English letter.



Strings and Problems

Given a string w, determine whether w € S.
 Suppose that L is the language
L={p]|pisalegal C++ program }
* This is modeling the problem:

Given a string w, determine whether
w is a legal C++ program.



The Model

 Fundamental Question: For what languages L
can you design an automaton that takes as input a
string, then determines whether the string is in L?

 The answer depends on the choice of L, the choice
of automaton, and the definition of “determines.”

* In answering this question, we’ll go through a
whirlwind tour of models of computation and see
how this seemingly abstract question has very real
and powerful consequences.



To Summarize

 An automaton is an idealized
mathematical computing machine.

A language is a set of strings, a string
is a (finite) sequence of characters, and a
character is an element of an alphabet.

* Goal: Figure out in which cases we can
build automata for particular languages.



What problems can we solve with a computer?



Finite Automata



It’s time for another round of

Mathematicalisthenics!



We will distribute one packet to each row.

When the packet comes to you, follow the
directions to help it on its Magical Journey.



If you are holding a packet an the top sheet
has a giant star on it, please raise your
hand.

X




What's going on here?



A finite automaton is a simple type of
mathematical machine for determining
whether a string is contained within some
language.



Each finite automaton consists of a set
of states connected by transitions.
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start state,
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A Simple Finite Automaton
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The automaton is

run on an input
string and

answers ‘yes’ or

*no,"*
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A Simple Finite Automaton
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A Simple Finite Automaton
0

start @ O @

The automaton now
begins processing
characters in the

order in which they

appear.,
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A Simple Finite Automaton
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Each arrow in this
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Transition
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A Simple Finite Automaton
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Now that the
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looked at all this
input, it can
decide whether to
say ‘yes® or ‘no,’
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A Simple Finite Automaton
SEAL

Y.
T The double

circle indicates

I that this state

0F Appnnvnl Is an accepling

0 state, so the
auTomaton
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Now
autom:
looked
input
decide whether
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A Simple Finite Automaton
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The Story So Far

A finite automaton is a collection of states joined
by transitions.

Some state is designated as the start state.

Some number of states are designated as
accepting states.

The automaton processes a string by beginning in
the start state and following the indicated
transitions.

If the automaton ends in an accepting state, it
accepts the input.

Otherwise, the automaton rejects the input.



Time-Out For Announcements!



Problem Sets

 Problem Set Three solutions are now
available online and in hardcopy.

« We’ll aim to get PS3 graded and returned
by Thursday morning.

 Problem Set Four is due this Friday at

3:00
e AS

PM.

always, ask questions if you have them!

Office hours and Piazza are great places to
start.



Extra Practice Problems

 We've posted a set of around 30 practice
problems on the course website spanning all
the topics we’ve covered so far.

* (Optional but Good) idea: reflect on your
performance so far in the course and identify
any areas you can continue to improve.

 More generally, the TAs and I are happy to
meet with you if you’d like to chat about your
progress in the course.



Back to CS103!
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A finite automaton does not accept as
soon as it enters an accepting state.

A finite automaton accepts if it ends in
an accepting state.



What Does This Accept?
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What Does This Accept?

No matter where we
start in tThe
automaton, atter
seeing two 1's, we end
up in accepting state

%3‘
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What Does This Accept?

No matter where we
start in the
automaton, atter

seeing Two 0's, we
end up in accepting
state g,.
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What Does This Accept?

This automaton
accepts a string in
{0, 1}* iff The string

ends in 00 or 11,




The language of an automaton is the
set of strings that it accepts.

If D is an automaton that processes
characters from the alphabet %2, then C(D)
is formally defined as

C(D) = {we X*| D accepts w }



A Small Problem
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The Need for Formalism

 In order to reason about the limits of
what finite automata can and cannot do,

we need to formally specify their behavior
in all cases.

» All of the following need to be defined or
disallowed.:

« What happens if there is no transition out of
a state on some input?

 What happens if there are multiple
transitions out of a state on some input?



DFAs

 ADFA is a

e Deterministic
 Finite
 Automaton

 DFAs are the simplest type of automaton
that we will see in this course.



DFAs

e A DFA is defined relative to some
alphabet 2.

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in X.

* This is the “deterministic” part of DFA.
 There is a unique start state.

 There are zero or more accepting states.



Is this a DFA over {0, 1}7?
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Is this a DFA over {0, 1}7?
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Is this a DFA over {0, 1}7?
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Is this a DFA over {0, 1}7?




Is this a DFA?



Is this a DFA?




Is this a DFA?
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Drinking Family of Aardvarks



Designing DFAs

* At each point in its execution, the DFA
can only remember what state it is in.

* DFA Design Tip: Build each state to

correspond to some piece of information
you need to remember.

e Each state acts as a “memento” of what
you're supposed to do next.

* Only finitely many different states means
only finitely many ditfferent things the
machine can remember.



Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }
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Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Each state remembers
the remainder of the
number of bs seen
so far modulo three,




Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }
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More Elaborate DFAs

L={we€H{a * [}*| wrepresents a C-style comment }

Let’s have the a symbol be a placeholder tor *some character
that isn't a star or slash,”

Try designing a DFA tor comments: Here’'s some fTest cases to
help you check your work:

Accepted: Rejected:
[*a*/ [ %%
[**] [**[a[*aa*/
/***l aaa/**/aa

[*aaa*aaa*/ [*/

[*a[a*/ [**a]

[/aaaa




More Elaborate DFAs

L={we€H{a * [}*| wrepresents a C-style comment }




The Regular Languages



A language L is called a regular language
if there exists a DFA D such that C(D) = L.

If L is a language and C(D) = L, we say that
D recognizes the language L.



[.et’s take a five minute break!



Revisiting a Problem




N FASs

* An NFA is a

e Nondeterministic
 Finite
e Automaton

* Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.



(Non)determinism

A model of computation is deterministic if at every
point in the computation, there is exactly one choice
that can make.

 The machine accepts if that series of choices leads to an
accepting state.

A model of computation is nondeterministic if the
computing machine may have multiple decisions that it
can make at one point.

 The machine accepts if any series of choices leads to
an accepting state.

» (This sort of nondeterminism is technically called
existential nondeterminism, the most philosophical-
sounding term we’ll introduce all quarter.)



A Simple NFA




A Simple NFA

transitions defined
on 1!




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA




A Simple NFA

SSEAL
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A More Complex NFA

start
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A More Complex NFA

start
(O O8
0,1 T

If a NFA needs o make a

Transition when no Transition
exists, the automaton dies
and that particular path does
not accept,
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A More Complex NFA

start o5 o
(o) O
0,1

Oh no! There's no
transition defined!

O(1|]0|1(1
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