Finite Automata

Part One

Computability Theory

What problems can we solve with a computer?

What problems can we solve with a computer?

/

what kind
ot

computer?

Computers are Messy

Bd-Bit Interunit Transfer Bus

32-Bit Data Bus

T‘::""‘ i Core
- 7, Clocks
Y 32-Bit DataBus 32 Clock L
T i ,.rgg Cortral
Inear ress
z __t
g
{ ,'7 { } 92 4\ } Bus Irterface §, A2-431
Peb, P BE O#BE3#
Barrel Shifter | gazes Segmuer:gatmn _ 2 Cache Unit \ﬂif} ﬁdgr?
Indiex Paging %’l} 32
Bus - n Wiite Bufiers
) . Descriptor Physical rd
R egister File P ; : ¥ 4w a2
! - Redisters Address | g pyte A
) Cache DO-D31
Litn it and Tranzlation | ¢ Data Bus
ALU Atribute PLA Lﬂaﬂkfaf:‘de - ;2 Transceivers
LITer
ADSHWIRE DICE MAOR PCD
128 Bus Contral | paayT RDYE LOCK#E PLOCKR
EOFF# AZOM# BREG HOLD
. HLD& RESE T SRESET IMTR
Displacemert Bus . Brefetcher | | Reguest | MMISMIE SMISCTE STP CLK#
| . - |~ Sequencer ﬁ
Microdnstniction
32 Byte Code Burst Buz | BRDY# BLASTR
Code CleLe Control ”
e Stream
L Instruction s 2 K16 Bytes Cache e g FLUSH# SHOLD EADS#
Protection Test| Decade Contral
Unit D E— 2 “
Crecoded
Control RO | Instriction Eoundary Scan
Fath Control TCH
TS
TDO

http://www.intel.com/design/intarch/prodbref/272713.htm

Computers are Messy

ISP Connector

e g
—
1C1 73] 1100
5 L9~ RESET (ADCT)PAT % mmwrmm-—hl 2l
O & (ADCE)PAS 2% = oy
- (ADCs)PAS (32 Coshzt 3 .
XTAL2 (ADC4)PAS —= = =
= - (ADC3)PA3 (T GND .
P XTAL1 (ADC2)PAZ —— !
GND (ADC1)PAT |22 :
" 2 32 1 aner (ADCojpao 22 3 -
tu E a0 AVGCC 4
31| AGND (SCKPBT |2 ' 5
e (SCK)
o 4\'310-E« N (MISO)PB6 % -
= 5] vec (MOSDPBS | —2 o=
L GND (SSiPB4 2 SRERe o5
0.1 AMHCCal ; = | SD Casrgcunnecmr
A (AINVINT2)PB2 (2~ Ef
(Tipe1 = Iy
TUWXCK)PBO —— L o b
GND) GND GND
{(TOSC2)PCT %
(TOSC1)PCE |—=2-
VCC=3.3v (DiPCs 2L -
é (TDOPC4 |22 [T 11 -
! oot 5
3 e |2 T e
3.3V el 23 fuf 3 \
: (SDAPC1 |22 Ci- o
- C7 (SCL)PCO |22 5 v }—n
1 _[C2 14] . s/=
4 21 * gl
(ocz)PD7 =L .
Yool (cpipos |20 LS GND
({OC1A)PDs T i 14
L (ociB)pDs 12 1 TN TiouT |
GND (NT1)PDZ (T LED 19 TN TeoUT
(NTojpD2 (53— 55 21 piouT RIN |
(TXD)PD1 —2 it | 21 pour RN E-
(AXDIPDO T
MEGA32-P B I P Y
o35 GND (L)
C]om
by CC Dharmani - 3
GND RS232 DBa(F)Connector

www.dharmanitech.com

microSD/SD Card interface with ATmega32 ver_23

http://www.dharmanitech.com/

Computers are Messy

SM

4,8, 16 or 30 SMs
(32, 64, 123:" 240 SPs)

Cache

Multithreading

Double-precision SP

DP: double precision processor SFU: special function unit SM: streaming multi-processor

SP: streaming processor
Fig 2 Covering Everything from PCs to Supercomputers NVIDIA’s CUDA architecture boasts high scalability. The quantity of processor
units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has

double-precision operation units (SM) added.

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

Computers are Messy

Sy, o

WA NR RN

http://en.wikipedia.org/wiki/File:Eniac.jpg

Computers are Messy

That messiness makes it hard to rigorously
say what we intuitively know to be true:
that, on some fundamental level, different
brands of computers or programming
languages are more or less equivalent in
what they are capable of doing.

g -- C vs C++
' VS vs Java
.. vs Python

We need a simpler way of
discussing computing machines.

An automaton (plural: automata) is a
mathematical model of a computing device.

Computers are Messy

Bd-Bit Interunit Transfer Bus

32-Bit Data Bus

T‘::""‘ i Core
- 7, Clocks
Y 32-Bit DataBus 32 Clock L
T i ,.rgg Cortral
Inear ress
z __t
g
{ ,'7 { } 92 4\ } Bus Irterface §, A2-431
Peb, P BE O#BE3#
Barrel Shifter | gazes Segmuer:gatmn _ 2 Cache Unit \ﬂif} ﬁdgr?
Indiex Paging %’l} 32
Bus - n Wiite Bufiers
) . Descriptor Physical rd
R egister File P ; : ¥ 4w a2
! - Redisters Address | g pyte A
) Cache DO-D31
Litn it and Tranzlation | ¢ Data Bus
ALU Atribute PLA Lﬂaﬂkfaf:‘de - ;2 Transceivers
LITer
ADSHWIRE DICE MAOR PCD
128 Bus Contral | paayT RDYE LOCK#E PLOCKR
EOFF# AZOM# BREG HOLD
. HLD& RESE T SRESET IMTR
Displacemert Bus . Brefetcher | | Reguest | MMISMIE SMISCTE STP CLK#
| . - |~ Sequencer ﬁ
Microdnstniction
32 Byte Code Burst Buz | BRDY# BLASTR
Code CleLe Control ”
e Stream
L Instruction s 2 K16 Bytes Cache e g FLUSH# SHOLD EADS#
Protection Test| Decade Contral
Unit D E— 2 “
Crecoded
Control RO | Instriction Eoundary Scan
Fath Control TCH
TS
TDO

http://www.intel.com/design/intarch/prodbref/272713.htm

Automata are Clean
0

1 1 1 1

@ @

Computers are Messy

ISP Connector

e g
—
1C1 73] 1100
5 L9~ RESET (ADCT)PAT % mmwrmm-—hl 2l
O & (ADCE)PAS 2% = oy
- (ADCs)PAS (32 Coshzt 3 .
XTAL2 (ADC4)PAS —= = =
= - (ADC3)PA3 (T GND .
P XTAL1 (ADC2)PAZ —— !
GND (ADC1)PAT |22 :
" 2 32 1 aner (ADCojpao 22 3 -
tu E a0 AVGCC 4
31| AGND (SCKPBT |2 ' 5
e (SCK)
o 4\'310-E« N (MISO)PB6 % -
= 5] vec (MOSDPBS | —2 o=
L GND (SSiPB4 2 SRERe o5
0.1 AMHCCal ; = | SD Casrgcunnecmr
A (AINVINT2)PB2 (2~ Ef
(Tipe1 = Iy
TUWXCK)PBO —— L o b
GND) GND GND
{(TOSC2)PCT %
(TOSC1)PCE |—=2-
VCC=3.3v (DiPCs 2L -
é (TDOPC4 |22 [T 11 -
! oot 5
3 e |2 T e
3.3V el 23 fuf 3 \
: (SDAPC1 |22 Ci- o
- C7 (SCL)PCO |22 5 v }—n
1 _[C2 14] . s/=
4 21 * gl
(ocz)PD7 =L .
Yool (cpipos |20 LS GND
({OC1A)PDs T i 14
L (ociB)pDs 12 1 TN TiouT |
GND (NT1)PDZ (T LED 19 TN TeoUT
(NTojpD2 (53— 55 21 piouT RIN |
(TXD)PD1 —2 it | 21 pour RN E-
(AXDIPDO T
MEGA32-P B I P Y
o35 GND (L)
C]om
by CC Dharmani - 3
GND RS232 DBa(F)Connector

www.dharmanitech.com

microSD/SD Card interface with ATmega32 ver_23

http://www.dharmanitech.com/

Automata are Clean
0

1 1 1 1

@ @

Computers are Messy

SM

4,8, 16 or 30 SMs
(32, 64, 123:" 240 SPs)

Cache

Multithreading

Double-precision SP

DP: double precision processor SFU: special function unit SM: streaming multi-processor

SP: streaming processor
Fig 2 Covering Everything from PCs to Supercomputers NVIDIA’s CUDA architecture boasts high scalability. The quantity of processor
units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has

double-precision operation units (SM) added.

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

Automata are Clean
0

1 1 1 1

@ @

Computers are Messy

Sy, o

WA NR RN

http://en.wikipedia.org/wiki/File:Eniac.jpg

Automata are Clean
0

1 1 1 1

@ @

Why Build Models?

« Mathematical simplicity.

It is significantly easier to manipulate our
abstract models of computers than it is to
manipulate actual computers.

 Intellectual robustness.

 If we pick our models correctly, we can make
broad, sweeping claims about huge classes of
real computers by arguing that they're just
special cases of our more general models.

Why Build Models?

 The models of computation we will explore in
this class correspond to different conceptions of
what a computer could do.

 Finite automata (this week) are an abstraction
of computers with finite resource constraints.

* Provide upper bounds for the computing machines
that we can actually build.

 Turing machines (later) are an abstraction of
computers with unbounded resources.

* Provide upper bounds for what we could ever hope
to accomplish.

What problems can we solve with a computer?

What problems can we solve with a computer?

|

what is a
‘oroblem?”

Problems with Problems

 Before we can talk about what problems
we can solve, we need a formal definition
of a “problem.”

« We want a definition that

« corresponds to the problems we want to solve,
» captures a large class of problems, and
* is mathematically simple to reason about.

 No one definition has all three properties.

Formal Language Theory

Strings

An alphabet is a finite, nonempty set of symbols
called characters.

« Typically, we use the symbol X to refer to an alphabet.

A string over an alphabet 2 is a finite sequence of
characters drawn from 2.

Example: Let 2 = {a, b}. Here are some strings over 2:
a aabaaabbabaaabaaaabbb abbababba

The empty string has no characters and is denoted &€.

Calling attention to an earlier point: since all strings
are finite sequences of characters from %, you cannot
have a string of infinite length.

Languages

* A formal language is a set of strings.

 We say that L is a language over 2 if it is a
set of strings over 2.

 Example: The language of palindromes over
2 = {a, b, c} is the set

« {g, a, b, c, aa, bb, cc, aaa, aba, aca, bab, ... }

 The set of all strings composed from letters in
2. 1s denoted X*.

 Formally, we say that L is a language over X if
L C >*

The Cast of Characters

« Languages are sets of strings.

* Strings are finite sequences of characters.
* Characters are individual symbols.
 Alphabets are sets of characters.

Languages Alphabets

are sets of are nonempty, finite sets of

y y

. are finite sequences of
Strings Characters

Strings and Problems

Given a string w, determine whether w € S.
 Suppose that L is the language
L={"d","b", "c", ..., "2" }
* This is modeling the problem:

Given a string w, determine whether
w is a single lower-case English letter.

Strings and Problems

Given a string w, determine whether w € S.
 Suppose that L is the language
L={p]|pisalegal C++ program }
* This is modeling the problem:

Given a string w, determine whether
w is a legal C++ program.

The Model

 Fundamental Question: For what languages L
can you design an automaton that takes as input a
string, then determines whether the string is in L?

 The answer depends on the choice of L, the choice
of automaton, and the definition of “determines.”

* In answering this question, we’ll go through a
whirlwind tour of models of computation and see
how this seemingly abstract question has very real
and powerful consequences.

To Summarize

 An automaton is an idealized
mathematical computing machine.

A language is a set of strings, a string
is a (finite) sequence of characters, and a
character is an element of an alphabet.

* Goal: Figure out in which cases we can
build automata for particular languages.

What problems can we solve with a computer?

Finite Automata

It’s time for another round of

Mathematicalisthenics!

We will distribute one packet to each row.

When the packet comes to you, follow the
directions to help it on its Magical Journey.

If you are holding a packet an the top sheet
has a giant star on it, please raise your
hand.

X

What's going on here?

A finite automaton is a simple type of
mathematical machine for determining
whether a string is contained within some
language.

Each finite automaton consists of a set
of states connected by transitions.

A Simple Finite Automaton
0

1 1 1 1

@ @

A Simple Finite Automaton
0

() °

Each circle

represents a state
ot the automaton,

A Simple Finite Automaton
0

1 1 1 1

@ @

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

@ @

One special state is
designated as the
start state,

A Simple Finite Automaton
0

1 1 1 1

@ @

A Simple Finite Automaton
0

1 1 1 1

@ @

010110

A Simple Finite Automaton

0
start»CCl\)< m
0 1
0 \1/
1 1 1 1
The automaton is

run on an input
string and

answers ‘yes’ or

no,"

A Simple Finite Automaton
0

1 1 1 1

@ @

010110

A Simple Finite Automaton
0

1 1 1 1

@ @

010110

A Simple Finite Automaton
0

start @ O @

The automaton can
be in one state at
a Time, I1 begins
in The start state,

010110

A Simple Finite Automaton
0

1 1 1 1

@ @

010110

A Simple Finite Automaton
0

start @ O @

The automaton now
begins processing
characters in the

order in which they

appear.,

A Simple Finite Automaton
0

1 1 1 1

@ @

W

A Simple Finite Automaton

start

1

0

W

A Simple Finite Automaton

0

Each arrow in this
diagram represents
a transition., The
automaton always
tollows the
Transition
corresponding to
the current symbol
beina vead

A Simple Finite Automaton

start

1

0

W

A Simple Finite Automaton

start

1

0

W

A Simple Finite Automaton
0

1 1 1 1

@ @

W

A Simple Finite Automaton
0

1 1 1 1

@ @

oo

A Simple Finite Automaton

0
start @ m
0 1
0 \1/
1 1 1

Atter
Transitioning, the
automaton
considers the
next symbol in
the input,

A Simple Finite Automaton
0

1 1 1 1

@ @

oo

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton
0

1 1 1 1

@ @

oo

A Simple Finite Automaton
0

1 1 1 1

@ @

II%III

A Simple Finite Automaton
0

1 1 1 1

A Simple Finite Automaton
0

1 1 1 1

A Simple Finite Automaton
0

1 1 1 1

ORR0

II%III

A Simple Finite Automaton
0

1 1 1 1

ORR0

ONNTENND

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton
0

1 1 1 1

@ @

ONNTENND

A Simple Finite Automaton
0

1 1 1 1

@ @

CRNTENND

A Simple Finite Automaton

0
start q m
0 1
0 \1/
1 1 1 1
0
(&)
0

CRNTENND

A Simple Finite Automaton

0
start q m
0 1
0 \1/
1 1 1 1
0
(&)
0

CRNTENND

A Simple Finite Automaton
0

1 1 1 1

ORR0

CRNTENND

A Simple Finite Automaton
0

1 1 1 1

ORR0

IIIII%

A Simple Finite Automaton
0

A Simple Finite Automaton
0

A Simple Finite Automaton
0

1 1 1 1

@ @

IIIII%

A Simple Finite Automaton
0

1 1 1 1

@ @

010110

A Simple Finite Automaton
0

Now that the
automaton has
looked at all this
input, it can
decide whether to
say ‘yes® or ‘no,’

010110

A Simple Finite Automaton

0

start
O;

Now that the
automaton has
looked at all this
input, it can
decide whether to
say ‘yes® or ‘no,’

0101180

0

The double
circle indicates
that this state
iIs an accepting
state, so the

automaton
outputs ‘yes,”

A Simple Finite Automaton

0

start
O;

Now that the
automaton has
looked at all this
input, it can
decide whether to
say ‘yes® or ‘no,’

0101180

0

The double
circle indicates
that this state
iIs an accepting
state, so the

automaton
outputs ‘yes,”

A Simple Finite Automaton
SEAL

Y.
T The double

circle indicates

I that this state

0F Appnnvnl Is an accepling

0 state, so the
auTomaton

outputs ‘yes,

Now
autom:
looked
input
decide whether

say ‘yes* or ‘no.’

A Simple Finite Automaton
0

1 1 1 1

@ @

A Simple Finite Automaton
0

1 1 1 1

@ @

1 01000

A Simple Finite Automaton
0

1 1 1 1

@ @

1 01000

A Simple Finite Automaton
0

1 1 1 1

@ @

.

A Simple Finite Automaton

0
start q m
0 1
0 \1/
1 1 1 1
0
(&)
0

01000

1
1T

A Simple Finite Automaton

0
start q m
0 1
0 \1/
1 1 1 1
0
(&)
0

01000

1
1T

A Simple Finite Automaton
0

1 1 1 1

ORR0

.

A Simple Finite Automaton
0

1 1 1 1

ORR0

4

A Simple Finite Automaton
0

1 1 1 1

4

A Simple Finite Automaton
0

1 1 1 1

4

A Simple Finite Automaton
0

1 1 1 1

@ @

4

A Simple Finite Automaton
0

1 1 1 1

@ @

1

A Simple Finite Automaton

@ 0

1

A Simple Finite Automaton

@ 0

1

A Simple Finite Automaton
0

1 1 1 1

@ @

1

A Simple Finite Automaton
0

1 1 1 1

@ @

1

A Simple Finite Automaton
0

start
0

1

0

A Simple Finite Automaton
0

start
0

1

0

A Simple Finite Automaton
0

1 1 1 1

@ @

1

A Simple Finite Automaton
0

1 1 1 1

@ @

1

A Simple Finite Automaton

start

1

A Simple Finite Automaton

start

1

A Simple Finite Automaton
0

1 1 1 1

@ @

1

A Simple Finite Automaton
0

1 1 1 1

@ @

4

A Simple Finite Automaton
0

start
0

1

o

A Simple Finite Automaton
0

start
0

1

o

A Simple Finite Automaton
0

1 1 1 1

@ @

4

A Simple Finite Automaton
0

1 1 1 1

@ @

1 01000

A Simple Finite Automaton
0

This state is not
an accepling
state (it's a

rejecting state),

so the automaton
says ‘no,”

1 1 1

OO0

A Simple Finite Automaton
0

This state is not
an accepling
state (it's a

rejecting state),

so the automaton

says ‘no,*

A Simple Finite Automaton

This state is not
an accepling
state (it's a

rejecting state),

so The automaton

A Simple Finite Automaton
0

1 1 1 1

@ @

A Simple Finite Automaton
0

start
dy d,
0 \I/
1 1 1 1
Try it yourself:
Does this
automaton accept /!\ 0
or reject this QI_S/A
string?
0

11011100

The Story So Far

A finite automaton is a collection of states joined
by transitions.

Some state is designated as the start state.

Some number of states are designated as
accepting states.

The automaton processes a string by beginning in
the start state and following the indicated
transitions.

If the automaton ends in an accepting state, it
accepts the input.

Otherwise, the automaton rejects the input.

Time-Out For Announcements!

Problem Sets

 Problem Set Three solutions are now
available online and in hardcopy.

« We’ll aim to get PS3 graded and returned
by Thursday morning.

 Problem Set Four is due this Friday at

3:00
e AS

PM.

always, ask questions if you have them!

Office hours and Piazza are great places to
start.

Extra Practice Problems

 We've posted a set of around 30 practice
problems on the course website spanning all
the topics we’ve covered so far.

* (Optional but Good) idea: reflect on your
performance so far in the course and identify
any areas you can continue to improve.

 More generally, the TAs and I are happy to
meet with you if you’d like to chat about your
progress in the course.

Back to CS103!

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

A finite automaton does not accept as
soon as it enters an accepting state.

A finite automaton accepts if it ends in
an accepting state.

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

No matter where we
start in tThe
automaton, atter
seeing two 1's, we end
up in accepting state

%3‘

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

No matter where we
start in the
automaton, atter

seeing Two 0's, we
end up in accepting
state g,.

What Does This Accept?

What Does This Accept?

This automaton
accepts a string in
{0, 1}* iff The string

ends in 00 or 11,

The language of an automaton is the
set of strings that it accepts.

If D is an automaton that processes
characters from the alphabet %2, then C(D)
is formally defined as

C(D) = {we X*| D accepts w }

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

Cﬂ\
\
b
e R T e ¥

k.

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Cﬂ\
\
b
e R T e ¥

-

The Need for Formalism

 In order to reason about the limits of
what finite automata can and cannot do,

we need to formally specify their behavior
in all cases.

» All of the following need to be defined or
disallowed.:

« What happens if there is no transition out of
a state on some input?

 What happens if there are multiple
transitions out of a state on some input?

DFAs

 ADFA is a

e Deterministic
 Finite
 Automaton

 DFAs are the simplest type of automaton
that we will see in this course.

DFAs

e A DFA is defined relative to some
alphabet 2.

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in X.

* This is the “deterministic” part of DFA.
 There is a unique start state.

 There are zero or more accepting states.

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

0

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

0’10’1

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA?

Is this a DFA?

Is this a DFA?

R, : i e YLt

Drinking Family of Aardvarks

Designing DFAs

* At each point in its execution, the DFA
can only remember what state it is in.

* DFA Design Tip: Build each state to

correspond to some piece of information
you need to remember.

e Each state acts as a “memento” of what
you're supposed to do next.

* Only finitely many different states means
only finitely many ditfferent things the
machine can remember.

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

d

)

start @

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

a
start b
RO

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

a a

RO

start b
DRRO

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

a a
start b b
() D)

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

a a a
A

start b b
DIROREO

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAs

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Each state remembers
the remainder of the
number of bs seen
so far modulo three,

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

start

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

tar

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b
tart

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b
tart
b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

tt_@@ a

b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

start a a
DR OO

b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

start'@ a »(q-\ 3 a
) ED)

b

, b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

start'@ a »(q-\ 3 a
) ED)

b

, b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

2
start '@ 3 »(q-\ 3
))

b

Recognizing Languages with DFAs

L ={we€ {a b}*| wcontains aa as a substring }

b

2
start '@ 3 »(q-\ 3
))

b

More Elaborate DFAs

L={we€H{a * [}*| wrepresents a C-style comment }

Let’s have the a symbol be a placeholder tor *some character
that isn't a star or slash,”

Try designing a DFA tor comments: Here’'s some fTest cases to
help you check your work:

Accepted: Rejected:
[*a*/ [%%
[**] [**[a[*aa*/
/***l aaa/**/aa

[*aaa*aaa*/ [*/

[*a[a*/ [**a]

[/aaaa

More Elaborate DFAs

L={we€H{a * [}*| wrepresents a C-style comment }

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that C(D) = L.

If L is a language and C(D) = L, we say that
D recognizes the language L.

[.et’s take a five minute break!

Revisiting a Problem

N FASs

* An NFA is a

e Nondeterministic
 Finite
e Automaton

* Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.

(Non)determinism

A model of computation is deterministic if at every
point in the computation, there is exactly one choice
that can make.

 The machine accepts if that series of choices leads to an
accepting state.

A model of computation is nondeterministic if the
computing machine may have multiple decisions that it
can make at one point.

 The machine accepts if any series of choices leads to
an accepting state.

» (This sort of nondeterminism is technically called
existential nondeterminism, the most philosophical-
sounding term we’ll introduce all quarter.)

A Simple NFA

A Simple NFA

transitions defined
on 1!

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

SSEAL

seRmp—

OFAPPROVA
———T1l0]1]1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(O O8
0,1 T

If a NFA needs o make a

Transition when no Transition
exists, the automaton dies
and that particular path does
not accept,

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start o5 o
(o) O
0,1

Oh no! There's no
transition defined!

O(1|]0|1(1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(ONXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

start
(OSXORR O
0,1

A More Complex NFA

(OB O

SSEAL

sump—

OFAPPROVAL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270

